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CHAPTER I

INTRODUCTION

Accurate prediction of unsteady transonic flow about modern fighter

aircraft is important due to the requirement for transonic combat and

store separation, and because of the aerodynamic and aeroelastic prob- -.--.

lems encountered in this regime. Flutter, for example, is a potentially

destructive coupling between flexible structural motion and the unsteady

aerodynamics about that structure that is typically more critical in the

transonic flight regime than in either the subsonic or supersonic. Also,

the trajectory of a store separating from the parent aircraft can be ,e

greatly affected by the increased aerodynamic interference between air-

craft and store that is typical of the transonic regime. Although these

problems have been recognized for some time, progress in the prediction

of unsteady transonic aerodynamics about complex geometries, such as a

fighter aircraft with external stores, has been slow due to the Inherent

nonlinearity of transonic flow and the difficulties involved in obtain-

ing solutions to the equations describing this flow.

w* The Navier-Stokes equations adequately describe unsteady transonic -.

*& flow, including shock waves, viscous effects, and shock and boundary

layer interactions. Solution of the Navier-Stokes equations about com-

4. plex three-dimensional geometries on present-day computers would be very

expensive. Fortunately, many flow-fields of practical interest are mod-

eled well by the Euler equations, whic.h may be obtained from the VA
.4

Navier-Stokes equations by assuming that the flow is inviscid. Numeri-

cal solution of the Euler equations, though expensive, is much less ex- "

pensive than solution of the Navier-Stokes equations primarily because

-. A

p...
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of the elimination of the computational work and computer storage asso-

ciated with resolving flow variations at the small length scale at which _

viscous effects are important. Time-accurate numerical solutions of the

Euler equations about three-dimensional wings in oscillatory motion have

been previously presented by Sankar, et al.,' and by Salmond. Two-di-

mensional Euler or Navier-Stokes calculations about oscillating airfoils

in transonic flow have been presented by Magnus and Yoshihara, 3 Steger

and Bailey, Chyu and Davis,5 Janus,6 and Smith, et al.7  Time-accurate

Euler calculations about a body of revolution moving away from a flat

plate were reported in Reference 8. The explicit solution algorithms

used in References 3, 6, 7, and 8 allowed only very small time steps to ." .

be taken because of stability limitations. Implicit solution

algorithms, as used in References 1, 2, 4, and 5 typically allow much

larger time steps to be taken while maintaining a stable solution, but

the effect of such large time steps on time-accuracy is unclear. In

4, Chapter II of this paper the Euler equations are presented and trans-

formed from rectangular Cartesian coordinates into general time-depend-

ent curvilinear coordinates to allow for dynamic grids that can follow

the motion of the body. In Chapter III an implicit upwind finite volume

scheme is presented for solving these equations, and several variations

of the scheme are applied to an airfoil oscillating in pitch in tran-

4" sonic flow to study the effects of different time step sizes, different

approximate factorizations, and first-order time-accuracy versus

second-order time-accuracy on the results.

A pacing factor for the ability to obtain steady or unsteady

numerical solutions of the Euler equations about complex geometries is

the generation of a mesh of points, or grid, around these geometries.

2
*

I  
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--. 4'



The blocked grid approach described in Chapter IV allows much greater

flexibility In grid generation by allowing different curvilinear coordi-

nate transformations to be used for different parts of the grid, with

only the requirement that all grid lines be continuous from one block to

the next across the block-to-block boundaries. A scheme for solving the

unsteady Euler equations on blocked grids by advancing the solution one

time step in each block sequentially is presented in Chapter IV. Tech-

niques for transfer of information across block boundaries are discussed

along with analyses of error associated with the various techniques. -.

Steady and unsteady calculations on blocked grids around an airfoil are

compared with calculations on equivalent unblocked grids to verify the

L
analyses and to investigate the effect of block boundaries on moving

shock waves.

Three-dimensional calculations on a rectangular planform supercrit-

ical wing of aspect ratio two are presented in Chapter V for both steady

flow and oscillatory pitching of the wing, and the computed results are

compared with the experiment.

A,%
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CHAPTER II - ,

THE EULER EQUATIONS

The three-dimensional, time dependent Euler equations written in

strong conservation law form are

A 0 _ (2-1)

at 32 a- a 2

where

A Ap pu pvp

q u Pu~ v p ;W
L , f= uv , g 4 p , h - pVW

and p +) (Ob 2 +(2 -) J -.

le Here * is the mass density of the compressible fluid, i, , and

are the velocity components in the !, , and 2 Cartesian coordinate di-

rections, respectively, p is the pressure, and ; the total specific en- .

ergy of the fluid. The relationship between e and ^ is the result of .

making the perfect gas assumption, and Y is the ratio of specific heats.

Carets on the quantities in Equation (2-1) are used to indicate that %.

* iimensional quantities are being used. One way to non-dimensionalize

Equation (2-1) is to define the following non-dimensional quantities:

.

6 -
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x.__, , z , t

N ft

u v w (2-2)

a. a. a,.
A AA,

p , e -e =p S

where ir Is any convenient reference length, a0 -(yp./..) 1 2  the speed

of sound in undisturbed gas, and % is the density of undisturbed gas.

After some manipulation, the non-dimensional Euler equations may be

written in exactly the same form as Equation (2-1) with all carets

dropped...' 
'

To simplify numerical treatment of boundary conditions around gen-

eral geometries the Euler equations are recast in terms of general boun-

dary conforming curvilinear coordinates. The curvilinear coordinates

are defined as /

t - E(x,y,z,t)

n r(x,y,z,t) (2-3)

- (x,y,z,t)

T= T(t)

Note that the curvilinear coordinates are time dependent thus allowing

constant coordinate surfaces to follow the unsteady motion of the bound-

ary. Also note that the time coordinate is not dependent on spatial ..

location.

IA.

.. -" .-dg



Applying the transf'ormiation (2-3) to the non-dimensional Euler s

equations (Equation (2-1) with all carets dropped) gives

+ +F,~ + 0o (2-4i)

where

Pu

Q J Pv

Pwp

PU

Puu+&Xp

F t J PvU+C p and -xt +ZE,

U~e+p)-Etp

G =t~J PvV+n p and V-n u+n va~n w+nts

Pwv+nzp 
p

V(e+p)-ntp J.

OW

H t J PVW+4 p and Wxu+C V+; W+ t.

6



:n th abov eqain JT. is th Jaoba of the~~~ invrs transformation, -.. ~

:nThe abovc quaitons ar ivte Jaoba %fh nes rnfrain

J-~~~~.. (zx xzn J-(

E - (X -y Ynxn XC& ycz

- x - x . ) fl
(Y~z- - zxy,

C- .~~ r1 (x n 1 xy -& - n)

- - Y . - zTCZX - T - (-z , YT1 y tz S,.

The details of this transformation are given in Appendix A.
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% '%



CHAPTER III "'

IMPLICIT SOLUTION ALGORITHM .,-

3.1 FLUX SPLITTING,1
."

Hyperbolic partial differential equations, such as the Euler equa- .,.,.

tions, are characterized by the existence of a limited domain of depend-

ence. The solution at a point does not depend on every other point in

the field; this means that information travels only in certain charac-

teristic directions. Numerical schemes intended to solve hyperbolic

equations are usually enhanced by insuring that the numerical method .-,I

propagates information in the direction specified by the partial differ-

entlal equation. This can be done by using an upwind method, or one in

which the difference operator is taken in the direction from which the .-

information should come. Stability properties are often improved by

upwinding, and it is usually unnecessary to add smoothing terms or arti-

ficial viscosity to an upwind method.

The three-dimensional Euler equations, Equation (2-4), are a hyper-

bolic system of five equations and hence have five characteristic ve-

locities in each of the three spatial directions. These characteristic

velocities are determined from the quasilinear form of Equation (2-4),

T*T* o

" + 0 -

where the matrices A, B, and C are given by

,.

3F 3G aH (32)'

". -

'S%
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The eigenvalues of A are the characteristiC velocities in the dir'ec-

tion; the eigenvalues of B are the character isti c velocities in the n

direction; and similarly the eigenvalues of C are the characteristic

velocities in the C direction.

Since F, G, and H are identical except that where appears in F, ni

will appear in G and rwill appear in H, extra writing can be avoided by

letting K represent either F, G, or H, when k represent either E9 r, or

~respectively. Then define

-3K

K -~ (3-3)

which corresponds to A, B, or C depending on the meaning of K. The gen-

eral flux Jacobian matrix K and its eigenvalues are derived in Reference

6. The eigenvalues of the matrix K are

A 1  A2 A3 (k u +k v + kw + k)k k k x y z t~t T 8k I

42~ 2  2 k 1 12  (-i

Xk (Bk CIVkI)t T (Bk c(kx z t 34

Ak - Sk -c'7kI)t

where c is the speed of sound.

L
it is possible to split the flux vector K into three parts, one

corresponding to each of the distinct eigenvalues of R given above. (For

the details of this splitting, see Reference 6.) The flux vector K is

then written as

K kKl AKi K k (3.5)

I2
_____________________________ - ~ . '. *'
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'where p

Pu pu + pek

Y-1J
KI =-J pv K4 pv + poky

Pw pw + pcK V

(u 2
+ v 2

+ w2  
e p + pcek kw

P

P,- .- q 1,pU 0x
K5  L PV - pok (3-6)

-W Ock~ z~

e p - pce

and

k x =kx ."

x TZT (k2 +k2 k. 1 2 -

ky "--''.
xyz

.4. k

kzT

ek k -x
u + kyV + KzW.

The sign of A in Equation (3-4) determines from which direction infor-

"ation should be used to determine the corresponding portion of flux,

K,, for Z.I, 4, and 5.
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The discussion above provides a rationale for writing thie flu~x .vc-

tor K as the sum of' two vectors, KL and K,

L 
-. (3-7)

KL is associated with the eigenvalues that h.ave positive signs, and K

is associated with the eigenvalues that have negative signs. The spe-

L Rcific method used to calculate K and KR will be discussed in the next

section.

3.2 Discretization

...-... :

A finite volume discretization of Equation (3-1) balances the in-

crease of' the conserved quantity In a comsputational cell, or volume,

with the flux of the quantity through the surface of the cell. Figure

(3-1) depicts a portion of the computational domain with a typical cell

labeled. Assuming the dependent variables are consfant in the interior

of cell (I, J, k), and that the flux vectors F, G, and H are constant

over the constant E~, constant n, and constant C surfaces of the cell,

respectively, an implicit discretization of Equation (2-4) Is (Reference-

9)

I , k .Z

iw jp ,t, K
-K ( -K

L
, KR .  3-7) I-: .

C1 Gn1 01n 1 Hn 1

• Sw. %.% .

k -N
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This can be written as

n n+ Gn'1AQn + A(6Fn 6 Hn+l) - 0 (3-9) %
,n

where 6, for example, is defined by V
.

6 F (F -F

. , , ,+ Ji-, < i-,J

and 6 and 6 are defined analogously. Letting FL,FR,GLG,H., a

be the split flux vectors for F, G, and H as given by Equation (3-7), an

implicit split flux discretization is given by -4..,

AQ + A-r;[ 16 F* FR)n+1 n (L + G) n l + 6 (H' + HR)nl] (3-1.0)

The fluxes are nonlinear functions of the dependent variables, and

must be linearized to obtain a system of equations that can easily be

solved fcr AQn. Beam and Warming I0 and Briley and McDonald have used

the linearization

Kn = K n nQf+ 0(A 2 , (3-11) .':-'

where Rn = (;K/3Q)n for a typLcal flux term K. The flux Jacobian matri-

ces requlred to linearize Equation (3-10) are :

3'. , .3'.

F = , n  A -, n..

A- r?~ 7. A.,

,.L~(3 R nH, R ::

4.. o • '

nr

.4'..'
12 N

Il-k-_.
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and are derived in Appendix B. Using this linearization, Equation

(3-10) becomes

[I - AT(6 A + 6i0 + iL + 6i+ R + 6iL i+ 6  C )&Qn

" = Se n +e n +e n .','

.,-&T(6 F 6  G + G Hn), (3-13)

where a distinction has been made between the implicit spatial differ-

ence operators and the explicit spatial difference operators by using

superscripts i and e respectively. The dots are used to indicate that

the difference operators apply to the product of the Jacobian matrices t4'

with AQn. If de, ee and e are chosen such that

a e E )

1

and 6 6, and are chosen such that

6 + + (W

'." - 6
e 

- + O(n )  (3-1)

i~ +e 
,

T;~

then substitution into Equation (3-13) yields

,-1.
*' n " . O, (3-.5) "-. ..



*+ +'C[ (A 0 + 0jID + ( + 0*) +

_[3 3C) , ~a~ 3H OA2 2A2
[IQ + - O An2 2)], (3-16)

after dividing through by AT and using the fact that "

AQ n fQn +l - Q" AT + O(At2) (3-17)

7- +

Using Equation (3-11) in (3-16) results in

+T + R + 'F + T-= O(AE,A, An, &A , AE An2  A 2 ) (3-18)

%,..-.,"

Therefore Equations (3-14) and (3-15) give a method that is second-order

accurate in space if A&, An, and Ac are O(At) and first-order accurate

in time when used with Equation (3-13). There are at least two simple

variations of this algorithm that will produce second-order accuracy in

time.

Before proceeding to a discussion of these second-order time-accu-

rate methods, simplify the problem by considering only one spatial di-

mension. Also, observe from the analysis above that carrying the split

flux vectors had no effect on the accuracy analysis. The fact that this

is a split-flux method only enters the problem when actually defining

the difference operators to satisfy the conditions given by Equations

(3-14) and (3-15), which has not yet been done.

The simplified problem that will now be considered is

a~Q 3F .

4,

.+ 0 (3-19)

4.aF-
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Because the time accuracy of the method is independent of how the split

fluxes are spatially differenced, any standard time discretization can b

be applied. A broad class of schemes is given by Beam and Warming's

formula1 2

t', [I T -OAtra A.At aF An-

[I + At ]]AQn - + AQ1 + O[C( - - p)At 2 ,At 3 ] .

"3-20) , *

The scheme given by (3-13) is the backward Euler differencing scheme

obtained from (3-20) by setting 8-1 and V-0. By taking 3-1/2, lp-0, a

trapezoidal scheme is obtained that is second order accurate. A three

point backward scheme is obtained by setting 8-1, I-1/2, giving

[I + 2 a Anl]AQn j- At N + 7 AQn-  + o(At 3 ). (3-21)

Spatially differencing Equation (3-21) with

6" i + O(Ax) (3-22)

ae + O(Ax 2)

will yield

[I + At6iAU]AQn - - eF + AQn-1 O(AtAx 2 ,At2Ax,At 3 ). (3-23)

7 7

For the sake of completeness, the trapezoidal scheme for Equation (3-19)

is

[I + At6iAQJAQn - -At6eF + O(At~x2 ,At2Ax,At 3) (3-24) A

and the backward Euler scheme written for Equation (3-19) is .w

,At n  -At6 eF + O(AtAx 6t2X,6t -25)"

15
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Although the truncation error has been determined without fully V

specifying the spatial difference operators, other properties of the

various methods cannot be determined until a and are completely de-

fined. To be consistent with the objective of deriving a finite volume

method, 6 and te should be central differences of quantities at oppos-

ing faces of a computational cell. Dependent variable values are only

stored at cell centers, so some method must be specified for determining

values at cell faces. Also, the difference operators must respect the

direction of information transfer and difference FL and FR in their re-

spective upwind directions. These two requirements are satisfied by

defining
• .. .0.,...

6eFj [(FL 1-FL 1) (FR -FR (3-26)

where F depends only on information to the left of point j+1/2,
i~. j1/2 adF

i.edepends on and F+/2 depends only on informa-J+1 deed onQ , ..- J+112

tion to the right of point J+1/2, i.e. F depends on Qj+, Q ....

One method to satisfy the accuracy requirement given by Equation ". -"

4, (3-22) for 6 e is to evaluate FL and FR by two point flux extrapolations

given by

FL 1 E )_FtQ A F(Q-0l) (3-27a)
J J

o  ) [~ - j+2F.(Qj+ 2) ] (3-27b)1 ,.. -
2 7j+2j12)

,inere
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If the eigenvalues do not change sign from the j-1/2 face to the j+1/2

* face, substitution of Equations (3-27) into Equation (3-26) gives either

a second order backward or a second order forward difference approxinia-

tion to each split flux component yielding

deF - + OAx2 . (3-28)
.. ". m.

This is true only if the eigenvalues are of the same sign on both faces

of the cell. Also notice that there is some ambiguity in using Equation

(3-27) because we use A which is at the cell face, but have not
j+11/2

specified how to obtain these quantities.

Another alternative for evaluating FL and FR so that Equation

(3-26) is a second order accurate first derivative of F is to evaluate

FL using a two point dependent variable extrapolation from the left and

FR using a two point dependent variable extrapolation from the right. e

This is the method of Reference 8 and is used for all calculations re-

ported here. For a particular cell face, the scheme reported here uses V.

QL Q (3-29)-. . 3 1

to calculate a set of left eigenvalues, X (QL), and left split fluxes,

F (QL) and uses

QR 3
I - Qj 2 (3-30)

17 '

,1
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to calculate a set of right eigenvalues, Xt (QR), and right split fluxes, r

CR

FO )  The flux at the face is then set to

FL - X (AL(QL) IAL(QL)I)Ft(QL) (3-31a)

and

FR - ( (QR) I'(QR)')FZ(QR) (3-31b)

Note that if a left and right eigenvalue have different signs, then the

corresponding split flux may be either sumed from both sides, if the

sign changes from positive to negative, or from neither side, if the

sign changes from negative to positive.

To determine the truncation error of this scheme consider the sca-

lar version of Equation (3-19) and assume 3F/3Q>O for all x. Then FR-o

and Equation (3-26) would become

3e-- (F- 1 1 F23] (3-32)
rxP i" ",~ - F' 2Q-

5. Letting AQ J, -QQj_, and using Taylor series expansion about Qj

F(3 - Qj- )  F(Qj +AQ) - F(QJ) +1 6Q Fj

1AQ 2 j O(AQ )(3-33)

F(3 - Qj_ 2 ) - F(Q4 - (AQj - AQj- ) )

13
"5 4

"."" 5.

S5'.- .**.*.5* ~'* * *J5 * ,* 55-...5*55*-*



1 ;F. j . 1 _ A _ )2  ?2F I  % "=F(Qj - (AQj i AQj- l ) TZ (AQj1 AQ- 3Q  ,

[ ( Qj - A Qj-1 (3-342r
2(Q.) --- 

.

Substituting Equations (3-33) and (3-34) in Equation (3-32), followed by

expanding all dependent variable values about xj and then simplifying

yields

5eF. F O(Ax2). 3-35) -
" j

By comparing Equations (3-28) and (3-35) it is clear that extrapolating j "*

dependent variables is different from extrapolating flux values only in..

the higher order terms.

The implicit difference operation 6 need only be first order accu-

rate and hence It Is evaluated using one point dependent variable ex-

trapolation giving "-A -;

- (AL(Qn)AQ- AL(Qn_) A Q _i) 1

(A(Qn +1 RA(QnQ) (3-36)
i- i TX-

Metric quantities involved in the evaluation of the Jacobian matrices

are taken from the appropriate face, so that AL(Q) uses metrics from .

J+112 and AR(Qn) uses metrics from j-1/2 in Equation (3-36).

For dynamic grid calculations, metric quantities including the cell

volumes change during the solution process. For this study, all spatial

metrics are evaluated at time level n to be used in the calculation of

AQ n  The time metrics at time level n are ,?valuated from the change in

19
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the grid from tn to t After AQn has been obtained, an approximation

is used to account for the change in cell volume from tn to t n + 1 given

by __

jn W(Jt )  M(Jn t )  V(J~t).n
J - + At ( + "n + + O(At 2). (3-37) %

In the limit as At-O, Equation (3-37) gives the geometric conservation

law. 13

Due to the large range of cell sizes involved in a typical solu-

tion, the Courant number in some cells may be several orders of magni-

tude larger than in other cells. For time-accurate calculations there

Ir is little choice but to choose the time step so that the maximum Courant

number is acceptable, even though this time step may be much smaller

than what could be taken in the majority of cells. If the steady-state

solution is of primary interest, however, time-accuracy can be sacri-

ficed to greatly increase the convergence rate by taking different time

steps in different cells. This is referred to as local time stepping

and is used in this study to obtain steady-state results. The time step

for each cell when local time stepping is taken to be

AT el n n A Z (3-38a)TAT ... ,r C + r,

where

A.k (CFL)Ak
AT . (3-38b)

All quantities in Equations (3-38a) and (3-38b) are to be evaluated at

point (i,j,k).
' °
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3.3 Factorizations

The finite volume scheme described by Equation (3-13) is not prac-

tical to use because the system of algebraic equations that are gener-

ated have a very large bandwidth. There are many Possible approximate

factorizations of this method that can be used to make the solution pro-

cess easier, as noted by Steger and Warming, 14for example. Several

factorizations have been recently applied by Whitfield, 9 and by Ander-

son, Thomas, and Whitfield. 15 One scheme that has been used is the

six-factor scheme given by

Ti

The solution of this scheme consists of successive solution of six block

jbidiagonal systems of equations which are

i n[I +T A -X -ATR (3-40~a)

[I Att A.JX2 XI (3-140b)

L
[I AM61 B*]X3  X2 (3-40c)

[I M5iB'j]X4 X3 {3-4J0d)

21
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[I + AT6 CLJx 5 -X (3- 40e)

[I + AT6 C.]AQn - (3-40f) "0

The bidiagonal solution can be vectorized in planes perpendicular to

lines along which backward or forward substitution is taking place. For

example, the solution of (3-40a), which is lower bidiagonal, is obtained

by forward substituting along & lines. In this case the vectorization

direction is the E-constant plane. Another factorization is

A -6A )[I AI ($nB +6'B-)][I AT(' 6C)Ann

(L{C. .) ]AQn -ATR (3-4 1)

The solution is obtained to this three-factor scheme by successive solu- '- ?

tion of three block tridiagonal systems of equations, and can be vec-

torized similarly to the six-factor scheme. This method requires half

the solution passes of the six-factor scheme, but each pass is more

costly since it requires solution of a block tridiagonal system. This

method also requires more storage than the six-factor because two sets

of flux Jacobians are required in memory at the same time, while the

six-factor only needs one at a time. Yet another factorization is given

by

I iBL 6 iL)][IA(6 A-& inB d CR)]AQn -ATRn (3-42)

[ +- E- 1-

This two-factor scheme is very attractive in that it consists of solu-

tion of a sparse block lower triangular system followed by solution of a

sparse block upper triangular system of equations given by

22...
*,-" %.-
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S+ 6 B. + 6 CL]X I  -ATRn (3-43a)

[I + At(5'A+ 60 + 6 Cq]AQ n " X1 . (3-43b)

Solution of (3-43a) is done by a simple forward substitution and solu-

tion of (3-43b) by a simple back substitution. As noted in Reference

15, the forward and backward substitution steps cannot be vectorized

along any coordinate line or constant coordinate plane. This is due to W

the fact that X in (3-43a) depends on Xi-,j,k' X, k and....-.
i , ,k 1 j-

" However, Janus 16 has subsequently derived an algorithm fori ,, ,k-1 ' -

vectorizing the substitution step by operating on all points in a diago-

nal plane in computational space simultaneously. A diagonal plane is

one on which i+j+k - constant. The solution of Equation (3-43) is a

pass through computational space starting at the lower corner, i.e. -.

(i,j,k)-(1,1,1), and sweeping through by diagonal planes until the upper

corner, (iJk)-(imax, Jmax' kmax) is reached. The second pass, given -

by Equation (3-43b) starts at the upper corner and sweeps back to the

lower corner. Using-this technique the solution of Equation (3-43) is

fully vectorizable. One disadvantage of this two-factor algorithm is

that three sets of Jacobian matrices need to be stored simultaneously.

A stability analysis for the six-factor, three-factor and two fac-

tor schemes was presented by Anderson, et al., in Reference 15. The

analysis indicated that the six-factor scheme had the poorest stability

properties and was stable up to a Courant number of about 10. The ,

two-factor scheme was least sensitive to Courant number and was stable

for all Courant numbers up to 35, which was the maximum investigated. %
' %'%VN " 

°.~ I. 5.

The present study includes calculations with both the six-factor and the

23
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two-factor methods which tend to verify the superiority of the two fac-

tor results for higher Courant numbers. These results will be presented

in Section 3.5.

3.4 Boundary Conditions

Characteristic variable boundary conditions are derived in Refer-

ence 17 for stationary grids and Reference 8 for dynamic grids. As in

these references, a layer of points outside the boundaries, called phan-

tom points, are used here to implement the characteristic variable

boundary conditions. Because there is only one point outside the bound-

ary, the computation of fluxes at boundary faces is modified to use one
V .

point dependent variable extrapolation at boundary faces both from in-

side and outside the domain. The change in dependent variables, AQn, is

taken as zero at phantom points. The result of this boundary treatment

is that the boundary conditions are only first order accurate. The as-

sumption is made that this will not affect global accuracy of the second "

order scheme. .

3.5 Time Accuracy

In this section the time-accuracy of the split flux algorithms pre-

viously discussed will be examined by comparing computed unsteady

results for different factorizations, different time discretizations, "

and different time step sizes. All calculations are for a NACAO012 air-

foil oscillating in pitch about its quarter chord point at a Mach number

of 0.755 and a reduced frequency of 0.1628, where reduced frequency, or

Strouhal number, is defined as

24
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with ^ - oscillatory frequency of airfoil motion,,

V- free-stream velocity

- chord length of airfoil

The mean angle of attack, aO , of the airfoil was 0.016 degrees and the

unsteady angle of attack amplitude, ai, was 2.51 degrees. The angle of

attack history of the airfoil is given by

a(t) - ao0 + a, sin($), (3-45)

which in nondimensional variables is given by

a(t) - a0 + I sin(M=kt) (3-u6)

18Experimental data is available for this case from Landon, and a corn-

parison of computed results with the experimental data will also be pre-

sented.

The grid used for these calculations was a 'C' grid with 221 points

on the airfoil and in the wake and 20 points from the airfoil to the .
L.',,.

far-field boundaries. The far-field boundaries were placed 25 chords

upstream and 30 chords above, below, and downstream of the airfoil.

There were 161 points actually on the airfoil surface. The grid was gen-

erated using the transfinite interpolation opt :on of the grid code writ-

ten by Thompson. Figures (3-2a) and (3-2b) show the entire grid and a

closeup of the airfoil. The maximum spacing between points on the air-

foil surface is 1.9% of the chordlength and occurs at the 60% chord po-

sition. From experience with steady calculations on this grid it has

been found that this grid resolution is insufficient to resolve weak

25
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shocks, but clustering the grid at shock locations Is impractical for

unsteady calculations in which the shock position changes by 20% of the

chord during the calculation. Solution adaptive gridding offers a solu-

tion to this problem, but is beyond the scope of this investigation. .4

The calculations were started with initial conditions of free

stream values everywhere, and then 500 iterations of local time stepping

with CFL (Equation (3-38)) equal to 15 were used to establish the steady

flow field before the unsteady motion was started. The local time step-

ping was replaced by a fixed time step, the same at all points, when the

unsteady calculation began. The unsteady calculations were continued

until the airfoil had gone through four cycles of pitching motion to

allow unsteady transients to decay. Airfoil motion for this and all

cases presented here was implemented by rotating the entire grid as a

rigid body about the pitch axis.

Results from the two-pass algorithm applied to the oscillating

NACAO012 case described above are presented in Figures (3-3) through

(3-5). Figures (3-3a thru h) show the pressure coefficients on the air-

foil surface at eight time instants during the fourth cycle of oscillat-

ing pitch. Three time step sizes are shown using the

second-order time-accurate three point backward scheme given by Equa-

tion (3-23), and two time step sizes using the first-order time-accurate

backward Euler scheme given by Equation (3-25). In Figure (3-3a) the

airfoil is 250 into the cycle, and although the angle of attack is in-

creasing through 1.090, there is a remnant of the lower surface shock
''I

wave moving forward and weakening. This phenomenon, and the similar oc-

currence involving the collapse of the upper surface shock when the an-

26
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gle of att>,, is decreasing (Figure 3-3e), is where the variation

between the different methods and time steps is most visible. The ex-

tremes in the shock locations given by the various curves are always

given by the 0.01 time step case and the 0.20 time step case. This is

true at each instant plotted in Figures (3-3a-h). In all cases, the k

shock wave given by the larger time step lags the motion of the shock

wave given by the smaller time step. Taking the shock location as the ,. ;.

position where the coefficient of pressure curve crosses the critical

pressure coefficient value, Figure (3-4) shows the shock location for

all the cases shown in Figure (3-3a). Notice from Figure (3-4) that

decreasing the time step an order of magnitude from AT - 0.10 to AT =

0.01 changed the shock location by approximately the same amount as re-

ducing the time step from AT - 0.20 to 0.10. This indicates that reduc-

tion of the time step below Ar-0.O7 should not be expected to change the "

shock location appreciably. Returning to Figure (3-3), another differ-

ence between results using different time step sizes is apparent. For

those cases with relatively large shock wave speeds, the larger time

steps show more compression downstream of the shock and a large wave-

length 'ringing' behavior, but in parts (c) and (g), where the shock has ,-,

nearly reached the point of maximum downstream travel, the smaller time

step produces a higher pressure coefficient behind the shock, with no

ringing, however. The AT-0.01 case also generally produces slightly -

sharper shocks than the larger time steps.

Comparing the first-order time-accurate results with the second-

order time-accurate results in Figure (3-3) shows little difference. The

first-order AT-0.05 pressures are between the second-order A-z0.C1 ahd

27
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second-order Ar-0.10 pressures, while the first-order AT-0.10 results

are slightly more different from the AT-O.01 results than are the sec-

ond-order At-O.10 results. Since the second-order &r-0.01 case can be 'K

assumed closer to the correct values, this Indicates that the second-

order method gives slightly better results for large time step sizes,

but no appreciable difference Is shown for this test case.

The difference in pressure coefficients for the different time step

sizes and methods discussed above make relatively little difference to

the lift coefficient history of the airfoil, as shown in Figure (3-5a),

but make more difference to the moment coefficient history, as shown in

Figure (3-5b). The ragged peaks are due to not calculating lift and

moment at the same time in each cycle. One reason for the small differ-

ence in lift is that the increased area under the pressure coefficient

curve due to the lagging shock position of the larger time step cases is A

counterbalanced by the overcompression behind the shock. This behavior

. imposes an additional moment on the airfoil, however, and is responsible

for the larger amplitudes of the &AmO.10 and Ar-O.20 moment coefficient

%;"i histories. .

A" The discussion above has dealt with the time step sizes used for

different calculations. Time step size by itself has little meaning for

application to general problems that may have different qrids and flow

conditions. A parameter that is much more meaningful for numerical so-

lution of hyperbolic systems is the Courant number. The Courant number

is the number of computational cells that a wave will propagate through

,1 in one time step. For a given time step, &i, Equations (3-38a,b) give
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a value for the CFL parameter that will be used as a measure of Courant

number for the three-dimensional problem.

maxlAPI maxIX11 maxKX'I:Jl
TI% %

CFL - Ax [ + (3-47) AF An

The-maximum CFL for the AM-0.0I case was approximately 10, the maximum

CFL for the AT-0.10 case was about 100, and for the AT-0.20 case the

maximum CFL was about 200. The maximum CFL occurs in the first cell off"

the airfoil at about 2.5% chords downstream of the leading edge. At the -

25% chord location, the CFL is about half its maximum value, and at the

trailing edge it is one-fourth its maximum. The local CFL decreases

quickly as the cells become larger away from the airfoil. The maximum

CFL in the second row of points off the airfoil surface is only 75% of

the maximum CFL in the first row.

All results presented thus far were obtained using the two-pass, or

two-factor, method. The six-pass, or six-factor, method has also been 'ZI

applied to the oscillating NACAO012 airfoil. Results obtained for ,,W,.

AM=0.01 and Ar=0.05 are similar to those obtained from the two-pass %

method, but for the Ar-0.10 case the pressure distribution displayed
%

oscillations as illustrated in Figure (3-6a,b). As previously dis-

cussed, the maximum CFL for this case is near 100 and occurs not at the

leading edge but slightly downstream of it at approximately the location

where those oscillations occur. The oscillations are present on both

the upper and lower surface, but are much larger in magnitude on the

lower surface throughout the cyclic motion of the airfoil, even though ..

the local CFL on the upper surface at times exceeds that of the lower

'.-
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surface as in Figure (3-6a). The reason for this is not understood, but

may be due to the asymmetry of the six-pass method. These results verify

the trend predicted by the stability analysis of Anderson, et al.15
Vol'

discussed earlier. It is apparent from the figure that in regions away

from the oscillations, the six-pass results match the two-pass results
".'..' d*

very well. .

The trapezoidal scheme given by Equation (3-24) was attempted for

this problem, but it was found to be unstable for all tested values of

CFL greater than one using local time stepping, and no full calculations

were performed.

A comparison of computed pressure coefficients for the pitching

NACAO012 with the experimental results of Landon 18 is given in Figure
',

V" (3-7). Figures (3-8ab) are plots of the experimental versus the com-

puted lift and moment coefficient histories. Computed results are plot- -4

ted for both the nominal mean angle of attack, mo0.0160, and for a mean

angle of attack of e-0.3750 . The use of a mean angle of attack dif-

ferent from the near zero angle of attack reported in Reference 18 is

motivated by the differences in the experimental C curves at points
p

that are 1800 apart in the oscillatory motion of the airfoil (compare

Figures (3-Tb) and (3-7f)), and by the obvious bias towards pos!*4 ve

lift coefficients shown in Figure (3-8a). The specific value used for

aO was obtained by using the slope of the unsteady lift versus angle of

attack curve to determine the change in aO required to match the experi- .

mental peak lift values. The a0=0.3750 calculation matches the experi- ..5
N

ment much more closely than the nominal. In particular, the

experimental data in Figure (3-7a) shows an already developed upper sur-
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f ace shock i n addition to the decaying lower surface shock. The

ac-0 O.0160 case gives the lower surface shock too far downstream and too

strong, while the upper surface shock has not yet been resolved. The '~

remaining parts of Figure (3-7) also illustrate better agreement for the

a 0O.375
0 case. The cz-0 -375

0 case matches the experimental lift his-

tory better than the ac- 0 O.16 0 case In Figure (3-8a), but both computa- 4

tions fail to match the negative portion of the moment coefficient

history in Figure (3-8b).

* 'o
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CHAPTER IV

EULER SOLUTIONS ON BLOCKED GRIDS

4.1 Basic Concepts

Various approaches have been presented tor making the task of grid

generation about complex geometries more simple, such as the Chimera .. ,

grid scheme of Dougherty, et al.,19 and Benek, et al. 20 Figure(4-1a)

shows a schematic of a Chimera grid. The Chimera approach to gridding

provides for multiple bodies that are gridded independently and communi-

cate between grids by interpolating in regions of overlap. The patched

grid approach of Ra12 l requires that grids meet along a common boundary

as shown in Figure (4-1b), but allows for discontinuity in the grid

across the boundary. The blocked grid scheme advocated by Thompson,2 2

Figure (4-1c), is a Pubset of patched grids that assumes complete conti-

nuity (or at least slope continuity) of the grid across block

boundaries. This scheme makes the task of information transfer across '

block boundaries much simpler than when grid lines are not continued

into adjacent blocks because complex interpolation is not required at
, 'p

grid boundaries. Though blocked grids require matched interface grid

boundaries that are not required by patched grids, blocked grids still

allow very complicated three-dimensional configurations to be easily

gridded. The grid used by Lasinski, et al. 2 3 to calculate flow about a .1

tri-element "augmentor wing" airfoil is an example of a blocked grid

used to model a complex three-body problem in two dimensions. Hessenius

and Pulliam2 4 presented steady inviscid two-dimensional calculations and "

unsteady one-dimensional calculations on blocked grids. An implicit

32
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4 entral difference method was used at field points and flux splitting

was used at the block-to-block boundaries. The blocked grid concept has

25been applied to three-dimensional problems by Weatherill and Forsey

"26and by Miki and Takagi. The common theme of these gridding methods is

the use of different grids, or coordinates systems, in different

regions, thereby allowing the most appropriate grid structure to be used

in each region. The primary conceptual difference between the Chimera

grids, patched grids, and blocked grids is the degree of independence

between the various subgrids. The idea of using different coordinates

systems in different regions is not new. In 1969, Thoman and Szewczyk27

calculated viscous flow over a circular cylinder by embedding a cylin-

drical coordinate system inside a rectangular mesh. The cylindrical

coordinates allowed better resolution near the cylinder, while the rec-

tangular mesh was more appropriate for the wake region.

The Euler code presented here will accept any arrangement of arbi-

trarily sized blocks. Only one block at a time is stored in memory

while all other blocks are stored in high speed secondary memory that is

accessed like a disk. Dynamic memory management Is used to adjust the

amount of memory requested while working on a particular block to equal

the amount of memory needed. Details of the block handling and

block-to-block information transfer techniques and an analysis of the

error introduced at block boundaries :ill also be presented in this

chapter. Calculations for transonic flow over an airfoil using blocked

33 . ..
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and unblocked grids will be used to validate the method. The method.*

will be applied to calculation of three-dimensional transonic flow about

a rectangular planform supercritical wing of aspect ratio two and corn-

pared with experiment to illustrate the application of the code in Chap- "

ter V.

4.2 Block Boundary Conditions

Consider the simple blocked grid arrangement shown by Figure 4-2. ,. *f

Solving on this block grid corresponds to partitioning the set of equa-

tions that would be solved if the entire grid were one block. Using the ..

two-pass method given by Equation (3-43), the partitioned matrix equa-

tions have the following structure

I +Ar!. 1  0 X :TI I I
-- -- -- --- ------------- - (4-a)

AL , I + II A'rRI

I + ATUI,j 1, 6TUI, II AQI XI""[""

- - -- (4-Ib)
0 .1 .. %QI Xo

L I I

Equation (4-la) is the matrix form of the lower block triangular

system of equations represented by Equation (3-43a), and Equation (4-1b)

is the matrix form of the upper block triangular system of equations

represented by Equation (3-43b). The partitioning of the matrices is

the mathematical analog of breaking the original grids into blocks I and

e.

I-. %



!I. Note that I + ATTIand I + 6TL 1 11 1l are lower block triangular

. .° .. ,-"

matrices and that I + ATL!, I and I + ATUII,I are upper block triangular

matrices. The rectangular matrix ATL I I contains coefficients of quan-

tities in block I that are required to make spatial difference expres-

sions for cells in block II complete. Similarly;, AtU 1 ,I contains

coefficients of quantities in block II that are required to make differ-

ence expressions for cells in block I complete. Although Equation

(3-43) uses backward Euler time differencing, this matrix representation "°

would be identical if either three-point backward or trapezoidal time

differencing were used. The conditions required to solve the blocked

grid problem and obtain exactly the same results as for the unblocked

problem will be discussed first. Then some simplifications that can be

used and the error resulting from these simplifications will be

presented. Expanding Equation (4-la) gives A.,. .k

(I + AxLII)XI  A'R1 (4-2)

(I * ATLII, 1 I)X1 1 - AR - T511, X (4--3)

Equation (4-2) illustrates that the intermediate solution obtained from

the forward pass through block I does not depend upon the solution, Xi',

in block II. There is a dependency on dependent variable values in

block II, however, that is not clearly displayed by the notation in

Equation (4-2). The elements of R1 that correspond to the first and

second cells inside the block boundary are affected by dependent vari-

able values from time tn in the first two cells across the block bound- the,

ary in block II. This is due to the fact that evaluation of flux at a

face generally will require two points or. either side of the face.

35



Therefore, one requirement for obtaining exactly the same answer from

the blocked calculated as from the unblocked is to have dependent vari-

able values available from the first two cells of neighboring blocks. 4:

Equation (4-3) shows that if the result of the forward pass in

block II is to be identical for the blocked and unblocked cases, then

the solution from the forward pass in block I, X,, must be available.

Though not shown by Equation (4-3), the actual elements of XI that are

required are those in the first cell off the block boundary. Now ex- .

panding Equation (4-1b) for the backward pass gives

(I + A tU,l)AQI - I - ATUIIAQII (4-L)

(I + ATUIIII)AQII X I (J4-5)

p."

The situation here is similar to that for the forward pass, assum-

ing that the correct X, and XII are available. The backward pass can be

completed first in block II to obtain AQII without results from block I.

The backward pass can then be performed in block I to obtain AQ1 since

&Q,1 is available.

The sequence of operations required to reproduce unblocked results

is summarized in Figure (4-3), and Figure (4-4) shows how the discussion

above could be extended to more complicated arrangements of blocks. The

grids depicted by Figures (4-3) and (4-4) can be considered to be in the

computational domain. The transformation that maps the blocks back to

physical space could map these rectangular arrays of points into a 'C'

grid or an '0' grid or any other conceivable shape obtainable by warping

or stretching the original rectangle. Although it is possible to write

te coordinate transformation for each block separately, noti.ing wcull K

36
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be gained by doing so. Any blocked grid that maps into computational

space in such a way as to allow assembly of the blocks with all block-

to-block interfaces correctly aligned can be represented by a single .

coordinate transformation, except in the case where block faces are dou-

ble-valued to allow a solid surface to be enclosed between blocks. An

example where blocking the grid would not be necessary except to allow -.

impermeable surface boundary conditions on a missile fin is given in

Figure (4-5). For the class of problems for which a single coordinate

transformation could be used to generate the entire grid, blocking is

still a useful concept. Computer memory sizes are not projected to be-

come infinite for a few years yet, and until this occurs, blocked grids

allow very large problems to be solved with one piece at a time in mem-

ory. Also, as discussed in Section 4.3, most charging algorithms heav-

ily weight memory usage so that it is economically attractive to reduce

the amount of memory used even if total computational time increases as

a result.

The original motivation for this study of blocked grids was the

capability of gridding complex geometries. The advantage of blocked

grids for complex geometries is the ability to embed a block of one to- -.

pology inside another block with a totally different topology. (Here ', .,-

the word topology is loosely used to refer to the type of grid system as

typified by the location of any cuts necessary to unwrap the physical

grid into a rectangular block in computational space with no interior .. .-;

boundaries.) Figure (4-Ic) is an example of this type of blocKed grid

system. The blocks that make up this grid and their correspondences are

shown in Figure (4-6). For this grid and for most blocked grids about ,"-'-'

3-.-
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truly complex geometries, there is no equivalent one-block or unblocKed .-

grid. For many block arrangements no sequence of operations exists that

.rwill proviJe values at boundaries when necessary. The question of ][z

whetner the multiblock solution can reproduce the unblocked solution is .

moot for these grids, and the correct question becomes whether it is
I- ..

possible to transfer information between blocks in such a way as to pro-

duce a stabe, conservative, and consistent scheme with no degradation

in accuracy.

Equations (4-1a,b) apply to the case where there exists a global

untlocked grid equivalent to the blocked grid, and hence are not

strictly applicable to cases where such an unblocked grid does not ex-

ist. Because blocked grids have complete continuity across block bounda-

ties it will always be possible, however, to trace any grid line until

it ends at a far-field boundary, an impermeable surface, a reflection

p.3ne, or closes on itself. Since multiple lines can originate from a

single line 1s it passes through a block boundary,-this tracing is not

unique for grid lines. As noted by Norton, Thompkins, and Haimes,2-

however, if cell centers are traced then ambiguities are resolved and

tt.e tracing is unique. For schemes with all unknowns along a computa-

tiznal line, such as the six-factor and three-factor methods, it is pos-

sble to write a set of equations for each of the three lines passing

througn each cell and solve these as if no block boundaries were pres-

ert. This fact has little practical value in terms of obtaining a solu-

tion for the two-factor scheme, since solving these lines in the correct

orer t:. have necessary information available for the solution of the

next line is not 3lway3 possible. It does mean that when considering

" 8



any particular block-to-block interface the grid can be locally re-

blocked so that both blocks become part of the same new block. This is

the rationale for using Equations (4-1a,b) as a standard of correct

block-to-block infurmation transfer, even though an equivalent globally

unblocked grid may not exist. :9...

As a very simple example of this consider the one-block "0" grid

schematic in Figure (4-7). To map the physical grid in Figure (4-7a)

into the rectangular block in the computational domain shown in Figure .

(4-7b), a cut must be made along line ab which is identical to cd in the

physical domain. The boundary conditions that should be used on faces

ab and cd fall into the general class of block-to-block boundary condi-

tions under discussion. The only peculiarity of this case is that the

block on both sides of the boundary is the same. This simple one block -

example illustrates the difficulty in supplying correct values at block

boundaries. In order to sweep from face ab to cd, the solution at face

cd must be used as a boundary condition at face ab. Following the ra-

tionale described in the previous paragraph, the grid can be reblocked

by placing the cut along line ef instead of ab making ab an interior

boundary to the new block. If no error is incurred on the outer bound-

ary of the new block then Figure (4-7c) is identical to Figure (4-2),

and therefore Equation (4-1) is applicable. Of course, the fallacy in

this argument is that boundaries ef and gh have the same problem that ab

and cd had originally, and therefore there will be some error at these

boundaries. This is why the following arguments concerning error at ,

block-to-block boundaries can only be considered valid in a small region

local to the boundary. - :

39 
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The value of XIin Equation (4-3) and of AQ II in Equation (14-4) are

the quantities that will not necessarily be available in cases with no

unblocked equivalent. The simplest approximation for these quantities

is to set their coefficients, U 1', and L IIto zero. To evaluate the

effect of this, first determine the correct solution for AQ1 and AQT1.

From Equations (4-2) and (14-3)

X 1 = + T14)

X Ar (I + ATLI,,,,)- [RI- ArL1 , 1 (I +AtrLT, 1 )
T R1] (4-7)

Substituting (4-7) In (14-5) and solving for hQ11 gives

-1L-

AQ_1 = CI+ATU11 ,11 ) (I+ArL11,11 Yl.H
1[AtR (+T II RJ 48

Using Equatons ((4-6) and (o4-8) in Equation (4-4) gives

unlo(I + equivaIl ATL. The siA t (4-9)

To setthir coefficiens (IA,Ijj anRI, t eo T vlat h

Setting U1 1 1 and to zero in Equations (4-8) and (4-9) yields

P' %.-% SQ

AQT= - A( I + ATU )-'(I + ML R (4-10)

l A( A, [I AAU, I(I + A !(-71)

The error committed in not passing the implicit solution across

* o CK t.ourdaries is

E . 12 -AU, F1 U1 ii+ AT~'j_( T j-1I

[R, - [rL11I-(2 + A(L+ ,)- RJI (4-12)

for the error in Q1 , and

-LT ( =T (I + ATL,)I{I LI-~ L((I-N-
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for th rrri AAI Todtemn the order of magnitude of EQ and

EQ , the magnitude of the individual factors in Equations (4-12) and

(4J-13) must be known. Each element of the matrices U 1 1 , U1,1 1, U1 1,1 1,

Ljetc. represents une term of a first order spatial difference in

one of the three coordinate directions, and therefore each element is

either 0(1/A&), 0(1/6n), or O(1/AC). The matrices (I+ArU III)-

(I+ATL 1 1 Y
1, etc. are 0(0) and Rand Riare 0(0). Using this in

Equations (4-12) and (4-13) results in

I (LAT AT-1 4a) .

0~ (..779 4L, rip (4-1 4b)

Since A and AQ11 are themselves 0(AT), the truncation er,,ir due to not

passing the solution vector across block boundaries is 0GAT/& , A~T/tt,

For better understanding of the error due to not passing the in-

plicit solution across block boundaries, consider the one-dimensional

backward Euler scheme, Equation (3-25), rewritten here for convenience.

CI - t6 iAQn . _Aft6eF + 0(AtAx2, At2&x, At2) (4-15)

Taking 6i as a backward spatial dif'ference and dividing through by Att

gives

Qn AnQfl An AQn 1.

-+ i J i-1 i-1 -6 .eFn O(Ax2, AtAx, At) (4-16)

setting =j- 0 yields
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AQ Aj nAQjn
S J + j J 6eF (4-17)

i ~~A .;-'' ~ t,

n+1 n+1 It
((aQ) O(At)) + -(A) ( F ) O(At, Ax 2

,t

giving a truncation error of O(At, At/Ax, Ax The three point back-

* ward scheme, Equation (3-24) is

3AQ - An- 1  AnAQn n n
+AjA en 2_-

Jx +J-IA1J-1 - 6eF n  O(Ax2 , AtAx, At2) (4-18)2At Ax

Setting A I -1 0 yields

n3AQ - AQn-1  n n-r

A+ - -i .eFn (4-19)

1n21 AF nrl
2 ) 0 (A t ) _ ((IF O t , x2 )  .

+ O(At. .- TL + 0(At, AX

giving the same truncation error on block boundaries as the backward

Euler.

It is obvious from the analysis above that not transferring the

solution vector across block boundaries results in an inconsistent

scheme at the boundary unless At/Ax+O. There is also a conservation

error at the boundary of O(At/Ax) due to the "implicit flux," AAQ, being

defined differently in the adjacent blocks. The conservation error

9,, could be eliminated by setting AAQ - 0 in both blocks at the boundary

face, but this adds another cell with an inconsistent differencing.

Another approach for passing the solution vector across block

boundaries is to approximate XI in Equation (13) and in Equation

".
..



* (I4-4) using whatever information is currently available from other

blocks. The values used in this study are the results from both passes

in adjacent blocks, at whatever time level was most recently calculated

in those blocks. This means that A I or AQ. may be used to approxi-n toe b k T

mate I in Equation (4-3), and A I or Wi I may be used to approximate

• + A in Equation (4-4), depending on the order in which the blocks are

solved. "

The effect of using a time lagged value of AQ is easily Illustrated

for the one-dimensional backward Euler method. Using An AQn-I +O(At2 )

in Equation (4-16) yields

AQn AnAQn - An AQ n e 2  -"" + JIA~j-I- -deFn +O(Ax 2 , Atax, &t'T (4-20) -

Ir Ax rCxx

.' The time lagged AQ resulted in additional truncation error of O(At2 /Ax).

Using the solution vector, Awf' to approximate the intermediate

solution, Xn, in Equation (14-3) also results In an 0(At2 /Ax) truncation

error in the calculation of Xn and in the subsequent calculation of

I&QI' as shown below. From Equation (4-4),

XI - A Q I + AT(UI,IAQI + UI IIAQII) (4-21)

This matrix equation is represented in operator notation by

X - AQ + AT5 AAQ (4-22)
b .% i'

which yields

- AQ, + O(AT2 (4-23)•VN
Using Equation (4-23) in Equation (4-3) and solving for Xi, results in

X ArCI AT *I L A1 + At At 4-24)

'4
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The truncation error of O(AT 2 /A&, AT 2 /n, AT 2 / A) in X will obviously

carry over as the same order of error when Equation (4-24) is used in

Equation (4-5) to calculate AQII. The order of the error is not

affected if Xn is approximated by AQn- 1 since AQ n n AQ n - 1 + O(AT2), and

therefore Equation (4-23) still holds.

To summarize the results of the previous error analysis, setting

the solution vector values passed to other blocks equal to zero results

in O(At/Ax) truncation error, while approximating the required solution

vector values by whatever values are currently available from adjoining

blocks results in O(At2 /Ax) truncation error. In both the AQ - 0 case

and the AQ approximated case, there is a conservation error due to

evaluating the flux at the block boundary differently in adjacent cells.

Throughout the above analysis the assumption was made that all val-

ues entering the explicit flux balance, 6eFn, were correctly synchro-
qpa"

nized to be time level n data. Although it is not difficult to code the

algorithm so that this is true, for many of the calculations in this

- study the flux vectors were formed using the latest available informa-

tion from other blocks. This technique is referred to as using unsyn-

chronized dependent variables. Using some time level n+1 information to

Sform the difference e Fn , that should be totally from time level n data

introduces an O(At/Ax) error and a conservation error at the block

boundary face.

For steady state calculations all of the errors discussed above

vanish as steady state is approached because they are all proportional

; to ,;.

VI ,..
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4.3 Coding for Blocked Grids A__-%

The design principles used for writing the unsteady, blocked grid,

implicit Euler code were, in order of priority: % %0

1. To allow any possible arrangements of blocks with no change to

the code.

2. Allow specification of any type of boundary condition, i.e. im- .

permeable surface, far-field, block-to-block, etc. on any patch

of a block surface.

3. Maximize vectorization. -d' d

4. Minimize memory requirements. A

5. Attain most efficient use of high speed secondary memory (SSD on

CRAY X-MP). -'

One important advantage of blocked grids is the ability to solve

large oroblems by working on only one block of the problem at a time

while all the rest of the data is stored on disk or a similar device. To

take full advantage of this, the code should have adjustable dimension

arrays so that arrays associated with blocks of any dimension can be ..%

packed into memory with no wasted space. One way of accomplishing this

in the FORTRAN computer language is the ribbon vector method. To use

the ribbon vector method, the program calculates the equivalent one di-

mensional array length for all adjustable dimension arrays. Starting . '

locations are then assigned for each of these arrays in the blank common

block, making sure to allow enough space between the start of one array

and tho next to store the entire array. Most computer systems provide a

O.-o- .. *• .- o -o-..• °=o,..° .. ,..,. . .. -.... . . . . ..... ..... .
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user callable subroutine that will allow the user to set the amount of

memory available to the program. This process is referred to here as

dynamic memory management. On systems with dynamic memory management

blank common should contain one array singly dimensioned to a length of

one. After the user program has determined the total number of words

required in the ribbon vector, the program will call the dynamic memory

management routine to allocate that many extra words. Because blank .,

common is stored as the last item of the users program in memory, the

extra allocated space goes to blank common.

Specific arrays, singly or multiply dimensioned, in the ribbon vec-

tor can be easily referred to and used inside subroutines by passing the

array as a parameter in the calling statement and using standard FORTRAN

adjustable dimension arrays in the subroutines. Figure (4-8) gives an a.

example of ribbon vector usage.

As discussed in Section 4.2, certain information must be trans-

ferred between blocks to obtain reasonable results. This information is

invariably in the first two cells of neighboring blocks and may consist

of the dependent variable values only or the dependent variables and the .

most recently available solution vector value. Since only one block is

contained in memory at a time, special provisions must be made for

transferring needed values from other blocks. The approach used here is

to store a set of resident boundary condition arrays permanently in mem-

cry for each block surface patch that joins another block. These resi- W1

dent arrays are updated to the next time level from information in each

block while that block is in memory. By doing this it is never neces-

sary to read or write a block more than once per iteration through the

.L56
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entire grid. Each block is dimensioned to have enough phantom points to

store all boundary condition information. Block boundary condition in-

formation is copied irnto the block's phantom point locations from the ',,'

resident boundary condition arrays for subsequent calculations. This .

greatly simplifies vectorizatlon of calculations as opposed to using

logic to pull points from the permanent boundary arrays as needed.

Doubly storing the dependent variable values in this way also al- .

lows synchronization of terms used in the explicit flux balance. The

method used to insure that time level n data is always used at block .'-

boundaries is given below. As a starting condition let all blocks and

the resident BC (Boundary Condition) arrays contain level n data. The

algorithm is as follows:

1. Bring current block into memory and update block BC phantom

points from all resident BC arrays.

2. Store information from current block into all resident BC arrays

associated with higher numbered blocks.

3. Solve for Qn+1 in current block.

4. Store information from current block into all resident BC arrays

associated with blocks numbered less than the current block and

resident BC arrays for the current block.

The high speed secondary memory on the CRAY X-MP, referred to as

SSD, is used to store all blocks not currently in memory. The SSD is

accessed using standard FORTRAN input and output methods. To make the

most efficient use of SSD, all SSD data files were unblocked. BUFFER IN

* 47
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and BUFFER OUT statements were used to transfer all data associated with

a block in a single unformatted buffer command.

4.4 Two-Dimensional Calculations on Blocked Grids 4P

This section presents results from steady and unsteady calculations

on blocked grids. Convergence and stability characteristics are exam-

ined for the steady case, and the converged steady solution is shown to

not depend on the blocking of the grid. The error in unsteady results

due to block boundary positioning is studied for the same airfoil and

%. flow conditions presented in Section 3.5 and results with AQn=O at block

boundaries and also with &Qn approximated by whatever information is

available from adjoining blocks are presented.

The steady calculations were for a NACAO012 airfoil at Mach 0.80

and angle of attack of 1.25 degrees. The grid used first, and the grid

that would later be split up to form block grids for comparison, was the

one-block "C" grid described in Section 3.5 for use in unsteady calcula-

tions. Figure (4-9) shows the pressure distribution obtained after 1000

local time steps at a CFL of 15 using backward Euler time differencing.

The strong upper surface shock was sharply captured, but the lower sur-

face shock is not properly resolved. Clustering grid points in the

neighborhood of the expected lower surface shock would sharpen it, but

this was felt to be unnecessary for this study of blocked versus un-

blocked results. The blocked grid tests were chosen to provide worst

cases by placing block boundaries in regions where the flowfield is rap-

idly changing. Figure (4-10) illustrates the division of the original ".,-"

gril into four blocks by cutting the grid at the leading and trailing

%" %1
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edges. This is a critical positioning of block boundaries due to the

high gradients in the leading and trailing edge stagnation regions, par-

ticularly during startup from the initial conditions of free-stream val- .'

ues everywhere. The first block boundary treatment used was to set AQn

= 0 at the boundary and to use the latest available (unsynchronized)

dependent variable values from adjoining blocks. Although the starting .

transients for this case produced highly unrealistic pressure values

particularly at the leading edge, the calculation remained stable using

local time stepping at a CFL of 15, and steady results identical to the

one-block solution were obtained. Figure (4-11) shows a three-block

grid chosen to investigate possible interaction between shock waves and

the block boundaries. Steady results for this grid were also identical

to the one-block case using the same block boundary treatment. These

tests show that stability is insensitive to block boundary positioning

and that no error is introduced in the steady solution due to blocking.

The convergence history for the one-block, three-block, and four-

block steady calculations as measured by the maximum change in density

is plotted in Figure (4-12). Another indicator of convergence is the

iteration number at which the number of supersonic points stops chang- ..V..

ing, or, is frozen. The number of supersonic points for the one-block

case is frozen at 474 iterations; for the four-block case at 604 itera-

tions; and for the three-block case at 599 iterations. For the cases

considered approximately 25% more iterations are required to obtain the

same degree of convergence with the blocked grids as with an unblocked .

grid. This disadvantage is more than offset in terms of cost to obtain

a solution, however, by the greatly reduced memory requirements for "- .
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blocked grid calculations. Table 1 shows a comparison of various job

statistics from the three diffferent cases run on the NASA-Ames CRAY

X-MP. Note that even though CPU times for the blocked grid cases were

higher than the unblocked cases, the cost in terms of accounting units

per step for the blocked grid cases were one-third that of the

unblocked.

Instead of setting AQ = 0 and using the unsynchronized dependent

variable values at block boundaries, the solution vector, AQ, could be

approximated and synchronized dependent variable values could be used.

In Section 4.2 it was shown that this should produce less error at block

boundaries for unsteady problems. The effect on convergence to steady

state of this more accurate boundary treatment is illustrated in Figure

(4-13) for the three-block case. The combination of unsynchronized de-

pendent variables with AQ approximated is not shown because it was un- .-

stable at a CFL of 15. The more accurate boundary treatment obviously

does not improve convergence to steady state. Its effect on time-accu-

racy will be discussed below.

The same four-block and three-block NACAOO12 grids used for the

steady calculations discussed above were used to calculate unsteady flow

at Mach 0.755 and a reduced frequency of 0.1628. The mean angle of at-

tack was 0.016 degrees and the amplitude of the unsteady pitching motion

was 2.51 degrees. These are the same conditions used in Section 3.5.

The time step was taken to be AT - 0.05, and backward Euler time

differencing was used for all unsteady block calculations.

Pressure distribution for the one-block, three-block and four-block

grids are shown n Figures (4-14a) through (4-14h). These results were

11
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obtained by using unsynchronized dependent variables from adjoining

blocks and setting AQ - 0 at the block boundary. The four block results

are nearly indistinguishable from the one block, but the three-block

results show a considerable error in shock location everywhere except 
in %-%

Figures (4-1 4d) and (4-14h). In Figures (4-14d,h) the shock wave has

reached its position of maximum downstream travel on the upper and lower

surface, respectively, and is nearly stationary. The shock wave posi-

tion given by the three-block calculation lags the correct location in

all cases that have an appreciable shock velocity. The excellent agree- .. -

ment of the four block case is due the small variation with time depend-

ent variables at the block boundaries. Even though large spatial

gradients are present at the leading and trailing edge of the airfoil,

the pitching motion does not cause rapid changes in a particular cell in

this region.

The analysis of Section (4.3) showed that by approximating AQ at

block boundaries and synchronizing the dependent variables used from
41

adjoining blocks, the error at the boundary could be reduced from

O(At/Ax) to O(At2 /Ax). Figures (4-15a) through (4-15h) show a compari-

son between pressure distributions obtained using approximated AQ's with

synchronized dependent variables, AQ-O with synchronized dependent varl-

ables, and &Q-O at the bcundary and unsynchronized dependent variables.

The combination of approximated AQ with unsynchronized dependent vari-

ables was not obtained due to stability problems. The AQ -O with unsyn-

chronized dependent variables results are the same as those in Figure

(4-14). Using synchronized dependent variables, but maintaining the

rough AQ-O approximation did not significantly improve the comparison

51



with one-block results. For example, at the instant in time shown in

Figure (4-15a), the AQ-O with synchronized dependent variables compari-

son is not as good as the AQ-O with unsynchronized dependent variables.

Examination of Figure (4-15) reveals the dramatic improvement yielded by

the approximated AQ and synchronized dependent variable block boundary

conditions. The largest difference between the one block results and

results from using approximated AQ and synchronized dependent variables

occurs when the lower surface shock moves upstream from block one

through the block boundary roughly parallel to the shock front and into

blocks two and three (See Figure (4-11) for the grid geometry.). The

lower surface shock has just left block one in Figure (4-15a). The up-

per surface shock in Figure (4-15e) has roughly the same relative posi-

tion and motion as the lower surface shock in Figure (4-15a), but for

this case the approximated AQ results show no error in shock position.

The results presented in this section from steady and unsteady cal-

culations on blocked grids have demonstrated the effects on convergence

to steady state and on time-accuracy of various block boundary condi-

tions. All of the block boundary conditions represented led to the same

steady solution, but the convergence rate was slower on blocked grids

than unblocked grids. Block boundary conditions that are formally more

time-accurate slowed convergence more than the less accurate conditions

for the cases presented here. Cost comparisons for the steady calcula-

tions showed that the reduced memory requirements of blocked grids make

w..-
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their use attractive even if more computer time must be spent to obtain

the same level of convergence. Comparison of unsteady calculations on
1-4 -. F.

blocked and unblocked grids verified earlier analysis that showed that

approximatLing Q on the block boundaries and using synchronized values %

of the dependent variables introduces less error than setting AQ-O and

using unsynchronized dependent variables.
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CHAPTER V

THREE-DIMENSIONAL CALCULATIONS

This chapter presents a comparison of steady and unsteady calcula-

tions with experimental results for a rectangular supercritical wing of

aspect ratio two. 2 9  The grid for the wing was generated as a single

continuous block of 100x27x25 points and then split into four blocks as

shown in Figure (5-1). The overall grid is a "C" mesh in the streamwise

direction and half an "0" mesh in the spanwise direction. Points are

clustered near the leading edge and near the wing tip. Blocks 1 and 3

include most of the lower and upper surfaces of the wing, respectively,

while block 2 wraps around the wing tip. Each of these three blocks are

81x27x9. Block 4 includes all points downstream of the wing and is

20x27x25. The wind tunnel test 2 9 was conducted in freon so that Y = -

1.131 for the calculations.

Figure (5-2) shows steady state pressure results at four span sta-

tions for which experimental data were available for a Mach number of

0.701 and four degrees angle of attack. The semispan location given on

the figures in this chapter is for the center of the cell used to con-

pare with experiment. Even though the span location of the experimental

data does not exactly match the cell center location, the experimental

data point is well within the boundaries of the computational cell with

which it is compared in all cases. The calculated leading edge expan-

siort overshoots the experimental near the wing root, but slightly under-

expands at the tip. Agreement at the tip is better than at the root,

but the inviscid calculation generally predicts lower upper surface

pressures than were measured. Steady c 'culations were done "or this

5~4i . %"I ,



Mach number at two degrees angle of attack with similar results. At

higher Mach numbers the comparison with experimental results worsens.

For Mach 0.83 and two degrees angle of attack the Euler code predicts a .- _

shock wave at the trailing edge of the wing, but the experiment shows A-41

the shock much farther forward. Figure (5-3) is a plot of experimental

and calculated results for this case at the 60% semispan location. The

fairly strong three-dimensional effects present on this low aspect ratio

wing are modelled fairly well, but viscous effects need to be accounted

for to significantly improve agreement with experiment. 
A

Unsteady calculations for oscillatory rigid body pitching of the

wing were performed to compare with experimental results. The pitch

axis of the wing was located at 46% of the chord, and the amplitude of

the unsteady angle of attack, a,, was one degree. Two reduced frequen-

cies, k-0.358 and k=0.714, were studied at a freestream Mach number of

0.7 and a mean angle of attack, a, of four degrees. The time step size 'AA
.1 .

used for both reduced frequencies was approximately At - 0.07. This time -%.%'
44'4 .

step size resulted in a maximum CFL of approximately 130 in blocks I and

- 3 and approximately 60 in block 4. In the wing tip block, block 2, the

maximum CFL was around 500 due to the very small cells near the line

singularity leaving the leading and trailing edge. The time step sizes 4

chosen resulted in 360 time steps per cycle of motion for k-0.358 and

4 180 time steps per cycle of motion for k-0.714. The magnitude and phase.
.A%

of the unsteady pressure coefficients were obtained by Fourier analysis "V

of the last cycle of motion calculated at each frequency. Figure (5-4)

presents magnitude and phase results obtained from the third cycle of
motion at k-0.358. Two hundred local time step iterations at a CFL of 8

preceded the start of the unsteady motion. The flow-field Information .

% 
.''. '. -:4
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from the last time step of this calculation was used to begin the calcu- ,.: %1

lation at k-0.714, and the higher frequency motion was continued for

four cycles of motion. Magnitude and phase of the unsteady pressures at

k-0.714 are plotted in Figure (5-5).

Figures (5-4) and (5-5) show the characteristic spike in the magni-

tude of unsteady pressure due to shock wave motion. The position of the

computed spike is different from the experiment by the same amount that V, W.N

the placement of the steady shock was in error, as seen by referring
_--4

back to Figure (5-2). The difference in amplitude between Euler results

and experiment is difficult to determine due to the sparseness of .

experimental data points, but the Euler code seems to overpredict the

magnitude near the root and underpredict near the tip. The agreement in

phase is generally very good except for the effects of the mislocated

shock. An exception to this is the 82% semispan results, for which

-. there may be problems with the experimental results.

Due to the large effect on unsteady forces and moments that can be "444'-

expected from the shock spike, a relatively small error in shock loca-

tion can result in relatively large differences in unsteady forces and

moments. The shock positioning effects of viscosity are, therefore, .' -I[

very important for unsteady transonic analysis. .
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*CHAPTER VI .e l

CONCLUSIONS

* An unsteady Implicit Euler equation solution algorithm using a fi-

. . . . . . N"

nite volume discretization and flux-vector splitting has been presented.14

* The effect on time-accuracy of different time step sizes, different ap-

proximate factorizations, and formal first-order versus second-order

time accuracy has been determined by numerical experimentation on an

oscillating NACA0012 airfoil in transonic flow. It was found that time

step sizes corresponding to Courant numbers of 100 or more can produce

time-accurate results if flow variables are not rapidly changing. Due

to better stability properties, the two-factor method studied here gave

better results than the six-factor method. The second-order time-accu-

rate three point backward scheme yielded only slight improvement for the %

test cases over backward Euler time differencing, which Is only

first-order in time.

Another topic covered here was the use of blocked grids to obtain

time-accurate Euler solutions. Techniques for transfer of information

betweenx blocks were analyzed and verified by comparing multi-block solu-

tions with equivalent one-block solutions. It was shown that approxi- V

mating the value of the solution vector required at block boundaries

with whatever information is currently available from adjoining blocks

introduces an 0(At 2/Ax) error in the transient solution at the boundary,

.-, -%

and gives unsteady results that compare well with unblocked results even

f or cases with a shock wave passing through the block boundary.

Converged steady results, with no body motion, showed no error due to

the block boundaries. Convergence to steady state was slowed to some

,".
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extent by using blocked grids, but the use of blocked grids is economi-

cally attractive due to the greatly reduced computer memory cost.

Steady and unsteady calculations of transonic flow over a rectangu-

lar planform supercritical wing using a blocked grid were compared to

experimental results. The steady comparison is good for those cases in

*', which viscous effects are negligible, but for higher Mach number cases '

the inviscid calculation places the shock downstream of the experimental

location. Unsteady calculations showed good agreement in terms of mag-"

nitude and phase of the pressure on the wing except where the shock wave

was misplaced. '-,*

.4.~ ..- '4
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PROGRAM RIBBON
COMMON S(I

C
C This program will read three 3-D arrays with dimensions NI,NJ,NK.
C

READ (5,*) NI, NJ, NK

ISIZE - NI*NJ*NK
C
C LX, LY, and LZ are the starting locations for X, Y, and Z.
C

LX- I
LY-LX+ISIZE
LZ-LY+ISIZE
LAST-LZ.ISIZE-1

c
C Subroutine GETMEM will increase the available memory

CALL GETMEM (LAST)
CALL READXYZ(S(LX),S(LY),S(LZ),NI,NJ,NK)
END -
SUBROUTINE RFADXYZ(X,YZ,NI,NJ.NK)
DIMENSION X(NI,NJ,NK),Y(NI,NJ,NK),Z(NI,NJ,NR)
READ(1O)X, Y,Z
DO) 20 K-1,NK
DO 20 J-1,NJ
Do 20 I-1,NI
A - X(I,J,K) + YCI,J,K)

20 Z(I,J,K) 2A*Z(I,J,K)
C

RETURN
END

Figure (4-8) Use of Adjustable Arrays in FOPTRAN
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APPENDIX A

TIME-DEPENDENT CURVILINEAR COORDINATES

Rewriting the nondimensional form of Equation (2-1) using the

transformed coordinates given by Equation (2-3) and the chain rule

yields

3 aq q .A.

+ 3f fn f(A-1)
7C T+ T4 +

+~ 7 &Y 75ny c

a + ah ah 0

Let J' 3xyzt and j (xyz

Then

t -ti (A-2)

where

J det x~ z~ (A-3)
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Multiply Equation (A-I) by J and regroup terms to arrive at

i.. (J Ttq)

B , e .01.

+ - (J t q  + J y + jzh)

( J ritq + J'n f + J g + J n h)

S(J tq + J Cxf + J cyg + J Ch) (A-4)

3(J T )  V(J &t a(J n t  a(J Ct
t+ t + t ti

- ............... . .... =n

y + y
U(J U )J nx  a(J Cx '':.-

+ w ---- +

. _ 4.

The coefficient of q on the right hand side of the equation can be

evaluated by considering the rate of change of a fixed volume, VO, in

Cartesian coordinates,

d ( Ff .. .
dxdydz - 0. (A-5)

V 0

Transforming this integral into the time varying curvilinear coordinates

F, n, yields

dt JI ; ddd - 0. (A-6)
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where V must depend on t in order for the unsteady coordinate represen-

tation to refer to the fixed volume V0 in Cartesian space and J is given.-' r

by Equation (A-3). Using Leibnitz' rule to take the time derivative of -..

the integral results in

rrr rr o.:'."
jj d~drnd4 JC * dS =0, (A-7)

V'(t) S (t)

where = ( t t )  '

and -h is the unit normal in ( ,n, ) space to the surface element dS of

volume V (t). Application of Gauss' Theorem to the second integral

yields

[a. + t + + ]d~dnd; 0. (A-8)

V (t)

Since the original volume, VO, is arbitrary, Equation (A-8) must hold

for all V (t). This implies that the integrand must be identically -

zero, yielding

t t = 0. (A-9)

The first term in Equation (A-9) can be rewritten as '

3)J J

(A-10)

because T is a function of t only. Multiplying through by tr in Equa-

tion (A-9) and using Equation (A-2) and Equation (A-10) yields

' , , '*- "."-',

t t t "t''[-.'

3 
". (A-11)
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Therefore, the coefficient of q in Equation (A-4) is identically zero.

Because Equation (A-9), or equivalently, Equation (A-11), express con-

servation of volume, they are referred to as statements of the geometric

conservation law.

Evaluation of the coefficients of f, g, and h on the right hand

side of Equation (A-4) requires writing the quantities J Ex' J nxt J X'.

etc. in terms of xe, x., x,, y , etc. To do this, first use the chain

rule to express partial derivatives with respect to the curvilinear co- 0 .

ordinates in terms of partial derivatives with respect to the Cartesian

coordinates as

.. -..

0 x E ( A-12 ) "'''0o x yT z

' O x n zn T-""-'0 x~ y ~ (A1

L J

Inverting Equation (A-12) yields

(A--13)

J a1 2  a1 3  a14

0 t (ynZ -Y~ z n) -y ( .

0 -t (x z -x Zn) t (x zC-x z) -t (x z -x z .-

- 0 txy-x'y -t 'x'Jy-x yv) t (x&yj-xnY '
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a12 - x(ynz-ycZ) - y (x z -x zn) z T(x y-y n

a 12 = xT(yCzc-yz) - y (x zc-x z ) + z (x

a Cv* +. XY-~nJ

a13 =  [T(Y&Zn-YnZ&) - YT(X&Zn-XnZ ) T n Xy-~y ) . _

Comparing Equation (A-13) with the chain rule expression for the partial ,'

derivatives with respect to the Cartesian coordinates in terms of par-

tial derivatives with respect to the curvilinear coordinates,

-T - t ' t t '

T x x 1X x Cx (A-14)

;z T z &Z nz 4z :'-

gives the values of the metrics.

Specifically, the metrics are

Tt (A-15a)

Tx =ty T z 0 (A-15b)

x " (ynZ - y z) (A-15c)

& J- (xz n - x z ) (A'-15d)

&z j -y '; 'A-15e)

x (yZr- yz) (1-15f)
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n - j-Ix z - x z ) (A-1 5g)

z . J-1 (xyz - xEyz) (A-15) _

*x j J'xy _ x'-"--=5)

x= t(yXz ynZ)) (A-1 5i

y J = -(xnz _ X Zn)  (A- 15j '.'_

Cz " -( n-XY) (A-1 5k) -/

t , -T t (Y x X + & vY y + Zz ZT )  (A - 1 5C )" ... .

It - -tt(nxXT + nyy, + nzZT) (A-15m)

- ~ + +(A-15n,
; ¢~t a -Tt(CxXT + CyYY + ;zZZ )  A15T -

The coefficients of f, g, and h in Equation (A-4) can now be evalu- ,j- -'

ated. Using Equation (A-15), the coefficient of f can be written as

St [a (y - y~zn) a - z) + (y ] (A-16)

This is of the form

t V (Vy I Vz), (A-?7)

where the vector operator 7 is taken to be

v [ (A-18)

and the and X represent vector dot and cross products, respectively.

Using a well-known vector identity, Expression (A-17) can be rewritten

as

t .7z (V X 7y) - 7y (V X Vz)] 0. (A-19)
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The expression is identically equal to zero because the curl of the gra- %

ient is always zero.

Similarly, the coefficient of g on the right hand side of Equation

(A-4) can be written as

7 - (Vz X Vx) 0, (A-20)

and the coefficient of h can be written as

t * C Vx X Vy) 0. (A-21)

Using the metric identities given by Equations (A-il)I (A-! 9) ,

(A-20), and (A-21) in Equation (A-4i) yeilds

3F + G + 0 (A-22)

where Q-Jq

F - Jt~(~ + f +z)*f

G - Jt~ (r1tq + nx + n g +n h)..',

H -Jt ( tq + ;x z)
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APPENDIX B

JACOBIANS OF THE SPLTT FLUX VECTORS

The Jacobians of the split flux vectors with respect to the depend-

ent variables are derived in this appendix in a form suitable for S 0

numerical calculation. The split flux vectors referred to in Equation

(3-7) are defined for the one-dimensional case in Equation (3-31). For ,- ,

the three-dimensional case the general flux vector is -.-

KL = glkL(QL) A(QL)I)K( (B-la) -
-i ,04,5 7 k.k

KR= (A I(QR) -IX(QR)I)KZ(QR) (B-'b)

where the symbol K should be replaced by F, G, or H when k is F, n, or .

r, respectively, and QL and QR are obtained by dependent variable

extrapolation along the k coordinate from more negative coordinate val- .- -

ues and more positive coordinate values, respectively. The eigenvalues, b.-.

k and 5 are given by Equation (3-1) and the split
Sk' Ak k

KI, K4, and K5 are given by Equation (3-6). Equation (B-i) illustrates ,

that KL and KR are the sum of from zero to three components, depending
, °-. '

on the signs of the eigenvalues.

The Jacobian of each of the possible components,

K Z 1,4= ,5, (B-2)

will be derived.

Expanding the derivative in Equation (B-2) yields

-k .Z 2Z

1423-
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The elements of the dependent variable vector are given by

JP (B-14a)

Q2 - JPu (B-4b)

Q3 - Jpv (B-4c)

Q4 - JPw (B-4d)

5Q Je (B-4e)

From Equation (3-4), the eigenvalues are

S T Bk (B-5a) ,"Ik  T.'. k'

14II -IA k . t T(k +cVk') - t T (9;( c)'Vk' + t k (H-5b) e:

A5 .t( - cIVkI) - t ( - c)lVkl - t k (9-5c)

where

- kxu + kv ," kzw + kt  (B-6)

'7k'-(2  k2  k2 1/2 (-'

ak kxu ky v + kzw (B-8a)

ek
ek - TV.T J(B-8b)

The local speed of sound, c, is

c (YP)1/2 (B-9)

where

p . (Y - 1)e - pI(-)i 0u2  v2  w
2

) (3-10) . .
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Expressing k' 'ak' c, and p in terms of the dependent variables yields -.-

kxQ2 + kyQ3 + kzQ4  k 
B-

O " kXQ2 + kQ 3  k zQa Q2 /2(8"2yI 3I + Z (8-12) :.,

2 2 2 1/2

= _ YY(Y-12 2 (B-i2) + Q

Q1

J-5[(Y-I)Q5 (B--,4)Q  "-

Note that

ask aek aek .
k k 1 k l k - 1,2 ,3,4,5. (B- 15 )

Using Equations (B-5), (B-11), (B-12), (B-13), and (5-15), the

derivatives of the elgenvalues with respect to the dependent variables

can be written as

ala O k  k k "-,

W2 I Th~e derivatives of" 8k are given by ....

t k k Xai:T yv xo (B-16b)
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k
k y(B-19c)

38 k
k Z (B-1 9d)

k - , (B-19e)

where

k x ... 

..

1

- k
k y

k
k z 77 .~a* 

-.-:( -.

The derivatives of c are most easily evaluated by rewriting c as cQ,/Ql.

Using Equation (B-13), the derivatives of cQ1 , are

5 (B-20a)

)(C "f(-f-1

2(cQ I 2 (B-20b) ,

(cQ ) YCY-1 )Q3

= -
(B-20d)

3( ) Y(Y-I

w 2 Q! .- = C (B-2 e) . ..
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The derivatives of c are

ac(cQ
- Q Q ( -- C) (B-21a)

Sc Q 1 (B-21b)

a(Q)

a Q; 1 (B-21 c)

ac (Q, ) (B-21d)

ao --

Q" (B-21e)
.5 "3Q5.

The derivatives of pJ with respect to the dependent variables will be

needed below. Using Equation (B-I), these values are . - "

2. . 2) 20'J) Y- + + Q  
. 54

-.. J- Y- (B-22a)
-Tj- -7- - 7-

a(pJ) -('V-1) Q2(B-22b)

_W2 72

a(pJ) Q3
- " - -(Y-1) (B-22c)
)(pJ) Q4

= - (Y-I) (B-22d)
.4M4

=. Y-1. (B-22e)_75

K,, K4, and K5 written in terms of the dependent variables are

.55
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Q2  44

I Q4 (3-2 3

23  3'. 4

2Q

Q2 + Q, QX

Q,

KQ 3  CQJk (B-23c)

Q5 + * - 'I..;k

147.

% %~k Vf



U'

10 0 0 0

P. 0 0 0 07

1 Y-1~, 0 0 1 0 0 (B-24)%

0 0 010

2 01

Q 2 + Q2 + Q2

where o 2 3 4

1 0 0 0 0

1 3(CQ) 3 (cQ1  VC a(CQ ) a(cQ1

4- 1 -1 -1 -1 -

9. k k k 1

4 4 14 4 14
a 5 1  a 5 2  a 5 3  a 5 4  +~a5 5  --

e, (B-25)

where

~1 a(pJ) I k3(Q + aka5  - - ~cQ 1  J70 j 1,2,3,4,5

Bk

Vkk
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and o::
:

10 0 0 0

13K 3Q ~ (cQ 3- C 1(C VCQ
-~~~~~ -k 1 1k-kak ac ~x' xx x Q X 3

-k-k 1-k-k-

I.

-~a(cQ I ) - a (cQ I ) - (cQI )  a -i (cQ 1 ) a(cQ) -.'--
-K53 I -k -: - z a-1 1 -kx 1 ..,.

z Q2Q3 i 5-.

5 5 5 5 5a 51  a 52  a5 3 a541 a 55

_j-z% 
.

(9-26)

where

(5 W7 a(cQ ) c'

6
k 1 -J -- ,2," .,5

*Let (R~~denote the element in row i and column j of the Jacobian

and let (KE) denote element i of the split flux vector K Equation

(3-3) can be rewritten as

-K~i (Kj)i + k (B-27)

for i -12,3,4",5,
J - 1,2,3,k4,5,

Explicitly writing all the elements of R, yields

Y-1'

(K1)1 1  - .tt kt (B-28a)

149

,..N .

an;e K) dnt lmntio h pitfu-etr ;'qain <":[ ]



(K1) 2 -2 t k (B-28b)
01 Y TXy

Y-1 V

02 Tv- k (B-29c)
(K )13 c-

-Y-1 Q2
*(K,)I t -.- t.l( (B-28d)

(K0)23 7- 0 TC B-28e)

(01 24 T -
(B-29a)

(K0)2 5 0 ~ '2 k (B-29e)

-Y-1 3

31'2 - 7 T~?~~~ k (B-29c)

Y-1 3B2d

-K 1 y t T (B-30a)

( 3 -7- tT k j )(B3c

* - Y-1 QB3b

(K1 )3  Y- T + (B-30c) l

-'~ ~ ~ ~ ~ 3 -7- t K~ 1  
B3d

(RO 35 0 (B-30e)

(K.)~ t Q4 av- (B-31a)
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" '- 'a- J

Q4- "'
K- kx  

(3-31 b)
042 ' -- '

Y-1 Q4%
(K1)43 = - - k 8 (B-31c)

(K1 )45  - 0 (B-31e)

Y-1 t a (B-32a)(K, )51  T -7 k k B3a

Y-1 Q2

Y-1 Q3,""'(KI )5  --- tT. [Z kx * I (B-32d)

(K1)5 5  0 . (B-32e) *-

5, 5-

Writing out all 25 elements of K,

- 1 4

(K 1 [Q1 k + X (B-33a)

(K I k (8-33b) .4K)12 " QI 1,

(K k (B-33c)4f')13 "7 Tr3 ..
4 ~ -4

%,.,. *,

Ik
K (8-33d)4K )14 " Q1 '1.":

I k ' B-33e)
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(K CQiX- al k 1 4 (C (B-34c)

14 3(cQ

(K4)2 2 niQ + cQikx) .- + lx (1 + k (B34.

(K P +CQ,kX) + A~ B-4

4)23 ~ N 2 W3 k~ x B35a)

1 [( + C, . x 4 (cQ1 )

kK A4 r_ (B-34b)

1)2 r7 2 kr '4 4 B3c ,

1 k 4-

[(Q 1k ,) W5 +~ a(Q (B-34d)

(K4)2 77 2 + C(cQ

ax4 a1C
- ~ k k4

'4
*(KLu 4  i1~ PQ CQk k +A x 41 (B-36b)

(K 1 -( + -4-; 1+ (B-35c)

7r3 e. ..P
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(Ic k (B-36d)
-K44 77(Q4 cQk) 7;4 Ak (1

a4 4- a(cQ1 )

(i(4)45 7y= Q + CQikZ) k + Ikkz (B-36e)

BA4 a(cQ a6
pJk 4, k 4 (pj) k c

(R4)5 1 [Q5 +Pj +cQl; k) A k . + 0 
8k

(B-37a)

4 p3JT - a(cq1 )
1' *~ k ' + cQ 2i1

(R4)52 7=[Q5+P 'Ik'7r Ak -K2 ek -'7- 1 W
(B-37b)

+ PJ + aCcQ Xk Xs 4 pJ 4 cQO)1) CQ1 cQ ]
-73 TF3(B-37c)

() =- k 4,((J) + 1 +C
W4Q~~~.. ~k7 -;4 k - 1 4r 4

FY- (B-37d)

pJk -3((c a
(K()5 -;[(Q 5  + AB-37e)

4)55+P ~e) 5 k g5- - 5 ''

The elements Of are

5R 11 a~ kA5]

(K5)1 Q 1 (B-38b)

*~7 51W2
Ze*

(K)1  k (B-38d)

(R531 I*-.* Z7 Tr3~

3A5*

(R 
k

5)14 1*Q (B 38d



-K Q A (B-38e)i

5577 W
5

3A5  ac
(K 1Q A5 (8-39a)

5 ) 2 1  (Q - c wki~- k

(K5)22  - Qx) + A (I x~) (B-39b)

( 5 ) 2 3 77 2 cix). - Ak~ x (B-9
3 3%

(K .[( 2 -CQI; ). A (8-39d)

(5)24 7721,(Q2 -cix)~ =- k~ x (B-39e

55

k S~ya(CQ1))
kK A (B-40a)4

(5)3 1  7 ~[3 - AQ;yTlkk

315 a(CcQ
(5)32 -7 - co y)C- ky (B-40b) '

aaQ2

P 3 7~ a 1 ~ kl(K) - -k)k + -A5 ~ 0 (B-40c)

3 3
(K ~ ~ ~ ~ ac )Q )_A B4d

(5)34 77 [(3 - cQ r4) k (Bl4y a'

(K5)[5  - cQlky). a - A 5 1 (B-40e)

(K I ~ kz 15 B4a

(5)41 77~.[(Q4 - Wl~~.- ~kkZ (B-3Qla

K 1(B.41 ..
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.~' %.>~... ./...*.~. ~.*.,* W4I"w"

(15)43 -r .[(Q4 - C(Q 1 ) (Bz 77 kZ)

Ck .r 5

1 K x ac ) 1B4i
15)144 - [(Q4 - cQ1k Z (' k Q4

-_4( 4

~(cQ ...-.

k  5 ( ) .-. "
(R)51 - .7[fQ. 4 pJ - cQ 1 )- A -- Bk - k cQ1 T -""

5(B-2a) -

(K) . [(Q 4 J - CQl 8 ) -s - - cQ

3'2 7 r 12 k 3Q1 r

(B-42b)

. k 5 5>(pJ) (cQ1 )
(R 5 ) 5 3 n 5 Pj D 450 + A k, k 3

14r k 3 73 ~ 4

(B-42c)

M(cQ ) ;
- k + X5(a(PJ) g 1 k i

4- ,-% 
-

-
R5)54 [ (Q5 + pJ - cQ1ek).W- k -74- k I

When forming the Jacobian of KL or KR in Equation (B-I), the derny- .

9 ' atives Ot only those comnponents with a non-zero coeffioient are used. :

4.

(9-2d

(55 -
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